Name

Module #3:

Date

Worksheet 14c: Solving Linear Systems of Equations: Addition (Elimination Method)

■ View Tutorial 14a (covers worksheets 14a, b and c)

8→Objective: Use the elimination method (addition & multiplication) in order to solve the system of equations.

Elimination Method Using Addition and Subtraction:

In systems of equations where the coefficient (the number in front of the variable) of the x or y terms are additive inverses, solve the system by adding the equations. Because one of the variables is eliminated, this method is called elimination.

Example 2:

Use elimination to solve the system of equations

$$x - 3y = 7$$
 and $3x + 3y = 9$.

Add the two equations.

$$\begin{array}{r} x - 3y = 7 \\ + 3x + 3y = 9 \\ \hline 4x = 16 \end{array}$$

$$\frac{4x}{4} = \frac{16}{4}$$

x = 4

Substitute 4 for x in either original equation. Then solve for y.

$$x - 3y = 7$$
$$4 - 3y = 7$$

$$-3y = 3$$
$$-3y = 3$$

The solution of this system is (4, -1).

y = -1

Use elimination to solve each system of equations:

1.
$$2x + 2y = -2$$

 $3x - 2y = 12$

2.
$$4x - 2y = -1$$

 $-4x + 4y = -2$

3.
$$x - y = 2$$

 $x + y = -3$

4.
$$6x + 5y = 4$$

 $6x - 7y = -20$

5.
$$2x - 3y = 12$$

 $4x + 3y = 24$

Name____

Module #3:

Date

Worksheet 14c: Solving Linear Systems of Equations: Addition (Elimination Method)

Elimination Method Using Multiplication:

Some systems of equations cannot be solved simply by adding or subtracting the equations. One or both equations must first be multiplied by a number before the system can be solved by elimination. Consider the following example:

Example 3:

Use elimination to solve the system of equations x + 10y = 3 and 4x + 5y = 5.

$$x + 10y = 3$$

 $4x + 5y = 5$

Multiply x + 10y = 3 by -4. Then add the two equations.

$$-4x - 40y = -12$$

$$4x + 5y = 5$$

$$-35y = -7$$

$$-35 = -35$$

Substitute $\frac{1}{5}$ for y into either = original equation. Then solve for y.

$$x + 10y = 3$$

 $x + 10(^{1}/_{5}) = 3$
 $x + 2 = 3$
 $x + 2 - 2 = 3 - 2$ $x = 3$

The solution of this system is $(1, \frac{1}{5})$

Use elimination to solve each system of equations:

6.
$$3x + 2y = 0$$

 $x - 5y = 17$

7.
$$2x + 3y = 6$$

 $x + 2y = 5$

8.
$$3x - y = 2$$

 $x + 2y = 3$

(,)

(,

(,)

9.
$$4x + 5y = 6$$

 $6x - 7y = -20$

10.
$$4x + 2y = 8$$

 $16x - y = 14$

(

(